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On the motion of thin airfoils in fluids of finite 
electrical conductivity 

By JAMES E. M c C U N E  
Cornell University, Ithaca, New Yorkt 

(Received 29 September 1958 and in revised form 4 May 1959) 

A two-dimensional, small-perturbation theory for the steady motion of thin 
lifting airfoils in an incompressible conducting fluid, with the uniform applied 
magnetic field perpendicular to (and in the plane of) the undisturbed, uniform 
flow field, is described. The conductivity of the fluid is assumed to be such that 
the magnetic Reynolds number, R,, of the flow is large but finite. Within this 
assumption, a theory based on superposition of sinusoidal modes is constructed 
and applied to some simple thin airfoil problems. 

It is shown that with this particular field geometry the Alfvh wave mechanism 
is important in making possible very deep penetration into the flow field of 
currents and their associated vorticity. It is also shown that the current penetra- 
tion for an airfoil is much larger than for a wavy wall of wavelength equal to the 
airfoil chord. 

A value of R, = 5 is found to be a good approximation to infinity in this study; 
in fact, use of the present technique for values of Rwb of the order of unity is 
permissible. These results provide an indication of what is meant by ‘large ’ mag- 
netic Reynolds number in two-dimensional magneto-aerodynamics. 

Introduction 
In  a recent paper Sears & Resler (1959) have developed basic small-perturba- 

tion theories for the interaction of the steady two-dimensional motion of an 
inviscid, incompressible fluid of large conductivity (i.e. large magnetic Reynolds 
number, 3,) with magnetic fields of two different orientations. They were con- 
cerned primarily with the case of infinite R,; for that case they succeeded in 
determining the pressure distributions on perfectly insulating sinusoidal walls 
and thin airfoils when the applied magnetic field is either parallel or perpendicular 
to (and in the plane of) the undisturbed, uniform flow field. For easy reference we 
refer to these two orientations as ‘aligned’ or ‘crossed’. 

The extensive results obtained by Sears & Resler divide essentially into two 
parts, depending on the orientation of the applied magnetic field. In  the case of 
aligned fields the basic irrotational flow pattern is unchanged if R, = co; the 
essential new phenomenon is the appearance of surface currents that modify the 
values of the normal stresses acting on the flow boundaries, whether wavy wall or 
thin airfoil. These stresses remain in phase with the classical (no magnetic field) 
surface pressures, and no drag results from the magneto-aerodynamic interaction. 
When the magnetic Reynolds number is large but finite, on the other hand, the 

t Now with Aeronautical Research Associates of Princeton. Inc. 
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surface currents diffuse into the flow field a distance proportional to R;t and 
a boundary layer of current appears. The stresses on the surface are unchanged so 
long as the ' boundary-layer ' approximation holds, and again no drag is predicted. 
This last result enhances the importance, for aligned fields, of the infinite-conduc- 
tivity theories. 

The important phenomena when the applied magnetic field and undisturbed 
fluid velocity are mutually perpendicular are markedly different. For  infinite R, 
standing waves analogous to Mach waves appear, and these waves (which arise 
from the Alfvh mechanism) carry vorticity and current into the flow field. An 
important feature of the theory is the appearance of an irrotational elliptic part 
of the flow field in conjunction with the rotational part arising from the ALfvAn 
mechanism. The pressures on the boundaries are modified from their classical 
values in the crossed-fields case in such a way that a net drag appears corre- 
sponding to the energy carried off by the Alfdn waves. When large but finite 
values of R, are introduced, the current and vorticity waves become diffused as 
they move away from the body. The situation is then analogous to the viscous 
attenuation of sound waves (Rayleigh 1946; Lighthill 1956) rather than to 
boundary -layer phenomena. 

Sears & Resler have not analysed the finite R, case for crossed-fields except to 
show how sinusoidal waves decay. However, the pressures and forces acting on 
an insulating wavy wall are modified for crossed-fields by the introduction of 
finite values of R, (Resler & McCune 1960); so it is important to investigate the 
extent to which the general infinite R, theory of Sears & Resler must be modified 
in this case to allow calculation of significant aerodynamic quantities for finite 
values of R,. It is of particular interest to investigate how far into the flow-field 
current waves actually penetrate for finite bodies (as contrasted with the infinite 
sinusoidal wall). The results of such a study can be used as a measure of the 
possible importance, for typical aerodynamic configurations, of electro-magnetic 
interaction with the flow field. 

The present paper presents techniques applicable to linearized, incompressible 
magneto-aerodynamic problems involving a combination of the phenomena of 
Alfvbn propagation and current diffusion set up by flows past bodies made of 
perfectly insulating material. The central concern of the paper is with the finite- 
conductivity magneto-aerodynamic flow fields of cylindrical bodies of finite 
chord, e.g. thin airfoils, and a procedure using Fourier synthesis of sinusoidal 
modes (in an approximate form valid for large R,) is suggested. 

As a basis for this approach, the exact sinusoidal solutions of the governing 
equations are described and relations between the rotational parts of the magnetic 
and velocity fields are developed for each mode. The solutions given are more 
general than those of Sears & Resler, since they hold for all R,, but they are only 
a special case of more recent results (Resler & McCune 1960) whichinclude 
effects of compressibility and arbitrary field orientation. 

These sinusoidal modes, of course, can be used to obtain the flow past infinite 
sinusoidal walls; examples have been worked out in detail by Resler & McCune. 
In  order to give a preliminary indication of the range of validity of the present 
large R, approximation, exact results for the pressures on an infinite insulating 
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sinusoidal wallare quotedfrom the latter workandcompared withresultsobtained 
for the same problem using the approximate form of the sinusoidal modes. 

In the main portion of the paper a theory applicable to flows past thin airfoils, 
when the magnetic Reynolds number is large but h i t e ,  is developed for the 
crossed-fields configuration. As in the infinite-conductivity case, rotational and 
irrotational parts of the field appear. The technique used here is to construct the 
rotational part of the field by means of superposition of the appropriate sinusoidal 
modes and to relate this to the irrotational part through the boundary conditions 
at the insulating body. This procedure leads to the formulation of a boundary- 
value problem of mixed type (see, for example, equations (35 a, b) ) ,  which provides 
the extension of the Sears-Resler theory to finite values ofR,. Both the rotational 
and irrotational parts of the field are modified for k i t e  R,. 

The method, which is correct to order (47rRm)-l, is worked out in the present 
paper only for the lifting airfoil of zero thickness; the thickness problem can be 
treated by a completely analogous procedure. The cyclic constant of the elliptic 
field is determined in this paper by application of the Kutta condition, which 
requires that the pressure be continuous at  the trailing edge of the airfoil. 

One of the results of the theory is a practical estimate of the depth of penetra- 
tion of the current into the flow field for values of R, of the order of one or greater. 

The linearized equations 
The governing equations of magneto-aerodynamics have been discussed 

recently by several authors (see, for example, Cowling (1957) and Resler & 
Sears (1958)). Our present interest is in the form these equations take for steady, 
two-dimensional inviscid motion. 

Let us denote dimensional quantities by ( ). The assumption of two-dimen- 
sionality requires that the electric field have only a single component normal to 
the flow 

whereas the condition of steady flow requires (Paraday’s Law) 

Equations (1) and (2) together imply that 2 = 8k is constant throughout the 
flow field. 

The governing equations can be linearized in accordance with the following 
conditions. The disturbance-free configuration consists of a uniform electrically 
conducting incompressible inviscid fluid stream of speed U in the presence of 
a uniform applied magnetic field of strength Hw oriented normal to the free- 
stream direction in the plane of the flow. In the absence of disturbances it is 
specified that no currentsJEow, thus implying that the constant value of the electric 
field is - UH,. The electrical conductivity, v, of the gas is considered a scalar 
and constant throughout the field, and displacement currents are neglected. 

We write the velocity vector 4 = (U  +a, G, 0) and the magnetic-field vector 
H = (&., H, + &, 0) and assume 

6 = ( O , O , E ) ,  (1) 

A 

curlE = 0. (2) 

A 

29-2 
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Under these conditions both the momentum equation and Ohm’s Law can be 
linearized and written in dimensionless form 

a4 1 aH -+vp=- --Vh , 
ax m2 i a Y  .I 

c 
5 - u+h,, z&- 

(3) 

(4) 

where p is the fluid pressure, 6 denotes the magnitude of curl H = (0, 0, t), and 
Amphre’s Law has been used to replace the current by curl H. Absolute electro- 
magnetic units have been used and a magnetic permeability of unity (non- 
ferromagnetic materials) assumed throughout. 

The dimensionless parameters? R, = g U L  and m = U,/(4np)/H, are respec- 
tively the magnetic Reynolds number and the ratio of the free-stream speed to the 
Alfvh speed (which might be called the ‘magnetic Mach number ’). Dimensional 
quantities, denoted by ), are obtainedfrom the dimensionless ones through the 
definitions 8 = PUZP, a = uq, (%9, 2) = L(x, Y, 4,j 

A 

H = H,H, J” = cUH, j, 

where p is the mass density, j is the current density, and L is some appropriate 
length for the given problem. 

Equation ( 4 )  is available in such simple form only in two-dimensional cases 
where 8 is constant and known. An alternative expression which is sometimes 
useful can be obtained by taking the curl of Ohm’s Law, thus eliminating & 
through equation (2). In  linearized, dimensionless form the result is 

V2H. aH aq 1 
ax ay  an^, 

=-- 

This relation is correct for any (linearized) steady flow with the crossed-field 
orientation. 

Taking the divergence of (3) yields 

V2 p + - h = 0 (for any value of R,), ( 1 2  .) (7) 

since div H and divq are zero. Finally, taking the curls of (3) and (6) and cross- 
differentiating, one finds (Sears & Resler 1959) 

and 

where SZ is the magnitude of the curl of the velocity field. Note that if R, = 00, 

both 6 and s1 obey wave equations. 
It is of interest to note that when R, is large but finite, equation (8) can easily 

be put into a form analogous with the damped sound-wave equation first studied 
t In the absolute e.m.u. system of units the conductivity has purely mechanical 

dimensions. The R,,, defined here differs from that used by some authors by a factor of 4n. 
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by Stokes and recently analysed further by Lighthill (1956). (In the process, 
terms of order R;2 are neglected.) By noting that 

we can write ( 8 )  in the iterative forms 

N 1 3 5  
4nRm ax3 * 
-(1 +m2)- 

Equation (loa) is in the form of Lighthill’s equations (31), p. 267. 

The basic sinusoidal modes 
In this section we shall develop the basic relationships between the sinusoidal 

modes of the velocity and magnetic fields needed for our subsequent Fourier 
synthesis method of treating finite-body problems. 

Any of equations ( S ) ,  (10a) or (lob) can be solved approximately for general 
flows in exactly the same way as in the treatment given by Lighthill. First, 
however, we may observe that equation ( 8 )  can be solved exactly for an elementary 
sinusoidal mode, yielding a solution, valid for any value of R,, which takes the 
form 

&(x, y) = A ,  eiAZexp 

for y 5 0. This expression is useful in making clear the behaviour of a sinusoidal 
current ‘wave’ for any value of R,, large or small. It can in fact be used to 
construct the flow field for a wavy wall for all R, (Resler & McCune 1960). We 
are primarily interested here, however, in the form assumed by equation (11) 
when R, is large, since the superposition theory for flows past finite bodies is 
relatively simple only when the square root in (1  1) is expanded for either large or 
small R,. 

When h(m2 + l)/4nRm is small compared with one,t the solution (1 1) takes the 
approximate form, for y $0,  

(12) tA(x, y) M A ,  eiA(Z--mtde+A2yy 

where m(m2 + 1) y’ 
SmR, 

and the boundary condition of no incoming waves has been applied. This result is 
given by Sears & Resler and is clearly in the form of a damped propagating wave. 
It is also the approximate solution to either of equations ( 10 a) or ( 10 b )  and is in 
the form given by Lighthill and others for a damped, plane sound wave. 

t Note that this amounts to the specification of a ‘cut-off’ value for the wave number h 
when expansions for large values of R, are used. Such a restriction on h arises from the fact 
that the large R, approximation depends on the magnetic Reynolds number (based on 
wavelength) appropriate for each mode being large. This condition must always be violated 
for some sufficiently high mode, but it is not expected that such violations will lead to any 
important errors in practical aerodynamic problem (see the later discussion). Throughout 
this paper the parameter rn is taken to be a quantity of order unity, wherever the large R, 
approximation is used. 
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If R, is based on the wavelength of a sinusoidal wall and A is taken to corre- 
spond to the fundamental mode, then A = 2n. Such a wave is damped to l / e  its 
value a t  the wall when y has the value 

2Rm (A2r)-' = ;rrm(m2 + 1) 

This is the damping distance for large R,, obtained by Sears & Resler, which is 
appropriate for current waves set up by the motion of a conducting fluid past 
a sinusoidal wall. 

Substitution of (11) into (9), and use of the boundary conditions at y = co, 
shows that for ?I 3 0 

m J [ ( A  4nR, - 1) (1 +=)I 4nR, B, eiAZexp [ - Amy J+A.:] +-, w1' 

i ( l+- 2:) 
ax u, = - 

1+- 4nR, 
A( 1 + m2) 

v, = - 
A( 1 +m2) 

h,, = - mJ((*-l) 4nRm (l+K)) 4nRm A,  eihz exp [ - Amy J+i:] +--, ax 

h = -  i ( l+- %:) A ,  eihx exp [ - Amy J+A;t] +--, w2 

1+-- 
4nRm 

A( 1 + m2) 

a Y  I + -  
4rRm 

u, A( 1 + m2) 

This provides the essential connexion between the curls of the velocity and 
magnetic fields. Equations (13) can of course be expanded in an obvious way for 
large values of R,, and they then take on a form analogous to equations (12), with 

If we break up the perturbation fields into rotational and irrotatioml parts 

v = (u, v) = VR+ vq51, 
h (hx, hy) = h,+ Vq52, 

and keep in mind that the magnetic and velocity fields are both divergence 
free, ( 1  1) and (13) can be integrated immediately to give the perturbation com- 
ponents in the upper half plane 
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provided V2$, = V2$, = 0. This step is analogous to the procedure used by Sears 
& Resler and amounts to a definition of the potentials $, and $2. 

The rotational parts of the velocity and magnetic fields are related for each 
mode through equations (13) and (14). The potentials and $2 can also be 
related through the linearized Ohm’s Law, equation (4) ,  by observing that 
equality between rotational and irrotational parts of any equation must hold 
separately. Thus 

for all R,. Furthermore, differentiation of (15) with respect to x, use of the fact 
that V2$, = 0, and subsequent integration with respect to y shows that 

- a$, = %+f@) 
ay ax 

and f (2) = 0 because of the boundary condition of uniform flow at y = a. Equa- 
tions ( 15) and ( 16) are general and hold for any flow field with this field orientation. 
They were also given by Sears & Resler for R, = 00. 

The  wavy wall solution 

Before turning to the application of the above results to general flow problems, 
let us look briefly a t  the effects of finite conductivity in modifying the forces 
acting on an infinite, perfectly insulating sinusoidal wall, specified by 
Y(x)  = 8 00s 2nx. These results (Resler & McCune 1960) are merely quoted here 
and are intended both as an illustration of the importance of finite conductivity 
for crossed-fields and as an indication of the error involved in approximating the 
solutions for large R,. 

Realer & McCune show for the crossed-fields case that the pressure on the 
surface of the wavy wall is given in general by (real part implied) 

or, for large R, and m of order unity 

It will be seen that the f is t  term in brackets in (18) is the same as that obtained 
by Sears & Resler for R, = 00. The second term represents the f is t  correction to 
the pressure for h i t e  values of R,. 

Aphasediagram comparing therealandimaginarypartsof (p-p,) eczni=/( - 2 m )  
for various values of R, ranging from 0 to 00 is presented in figure 1. It will be 
seen that the effect of finite R, is to shift the phase in such a way aa to decrease 
the drag per wavelength for any m. In  fact, for large R,,, the drag per wavelength 

B 4 n w  is given by 
c D = - =  pU2,L m(mz+4)(2-R,(m2+4) 
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Note that for m = 1 and R, = 5 the correction is only 6 %. Expression (19) is 
plotted against R, in figure 2 for m = 1 and m = 3, and compared with the exact 
result obtained from (17). 

real 

0 

- 0 2 1  
h - 0 4  - 
8 
.3 
2 .a -0.6 - 

-0.8 - 

-1.0 1 b m = 0.71 

FIGURE 1. Phase diagram showing the pressure on a sinusoidal wall Y = E cos 2n2, for 
crossed-fields and several values of R,( =aUL) and m( = U(4np)b/Hm). The diagram gives 
the real and imaginary parts of the quantity [ p ( x ,  0+)  -pm] - 277s); a negative 
imaginary part leads to positive drag. 

04 

cl; 0.2 

- m = 3  

_-- 
0' I I I 
001 01 1.0 10 100 

R m  

FIauRp 2. Drag per wavelength on the sinusoidal wall of figure 1. The quantity 
C ~ E  Dl(4npU: Le2) is plotted against R, for the complete (all Rm) theory and compared 
with the present large R, approximation. -, all R,; - - - -, large R, approximation. 

It will be seen from figures 1 and 2 that for this simple case of the flow over 
a sinusoidal wall, a value of R, = 5 is large enough to provide an acceptable 
approximation to infinity when m is near one; moreover, the large R, approxima- 
tion is successful near R, = 1. We shall see subsequently that this result holds 
true also for certain typical thin airfoil problems. 
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theory Use of Fourier synthesis 
The results obtained above for sinusoidal modes can be used through Fourier 
synthesis to provide the basis for solution of any small-perturbation problem. In 
particular, it is useful to study the flow field associated with a lifting airfoil of 
small camber moving in a fluid of large but finite conductivity, in order to deter- 
mine in that case the range of influence of the electro-magnetic body force. 

With this in mind, and for the purposes of simplicity, we shall use the above 
results for the Fourier components in their approximate form for large R,, 
correct to order Rhl. In  view of the existence of a finite ‘cut-off) value for the 
wave-number h (see footnote p. 453) it will be necessary to assume that the 
airfoils with which we are concerned are so shaped that the higher Fourier com- 
ponents of the induced rotational fields are not too important. In other words, if 

L J ~ ,  o+) = A+(A) eiAxdh (20) 

we shall generally require A+(h) to vanish sufficiently strongly as Ihl +OO. This 
condition will be discussed further in a later section. 

We shall introduce the notation y+  and y- to denote respectively the upper and 
lower half planes. Applying the condition that there are no incoming waves, we 
have from (12) the approximate relations 

These relations can be reduced to an integration over the values of t on the x-axis 
through the use of Fourier inversion. In complete analogy with Lighthill’s 
treatment of damped sound waves, we find 

Thus, if the current density on the x-axis is known or can be determined, it is 
determined throughout the field. 

Moreover, because the Fourier components of the rotational parts on the fields 
(uR, vR, hxR, hyR, as well as Q and 6 )  all have the same functional form, each quan- 
tity can be written for the upper and lower half planes exactly as in (22) with 
E(u, 0 )  replaced in each case by the values of the quantity in question on the 
x-axis. Also, the Fourier transform of each rotational quantity can be related to 
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the Fourier transform of any other rotational quantity just as B, and A,  were 
related in equation ( 1 3 4 .  Consequently, knowledge of any one of the rotational 
quantities on the x-axis will determine all the others everywhere. We shall treat 
vR(z ,  0*) as the important quantity, because of its close connexion with the usual 
aerodynamic boundary condition at  the airfoil. 

The relations between the various Fourier transforms follow in a straight- 
forward manner from the approximate form of equations (13) and (14) and their 
counterparts for y < 0. If we pair the functions and their transforms as indicated 
in table 1, then each of the functions listed obeys an equation like (20). Some of 
the important relations between the transforms that follow approximately from 
(13) and (14) are given in table 2,  correct to order 

m(m2 + 1) 

= -g7TR, * 

B*(h) = [ i h ( l + m * ) + 2 h 8 m y ] ~ * ( h )  (2 .2)  D*(h) = q m (2.7) 

E*(h) = ( m - i h y ) P * ( h )  (2 .3)  Cf(h) = -m2P*(h) (2.8) 

A*(& = [ iA(1+ma)+2h2my]D*(A)  (2 .4 )  C*(h) = T m (2.9) 

C'(h) = * (m-iAy)D*(h) (2 .5)  D*(h)= - m  (2.10) 

TABLE 2 

These results imply, for example, that 

hsR(X, o*) = -m2VR(x, o*), (23) 

(24) 

where the primes denote differentiation with respect to x a t  y = Oh. Note that the 
symmetry properties of, say, vR determine the symmetry properties of all the 
other rotational quantities. 
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Application of boundary conditions 

We are now in a position to apply the boundary conditions appropriate to thin 
airfoils. For lifting airfoils of small camber and zero thickness we have as usual 

v(x, O * )  = Y’(x) = V R ( X ,  O*)  + - 

where c is the chord of the airfoil. We have further the conditions that both h, and 
h,, must be continuous at  y = O t .  Thus 

Substituting equation (23) into (28) we find 

Function Symmetry in y Function Symmetry in y 

.u, symm. hnR Antisymm. 
R S m .  UR Antisymm. 
E Antis-. $1 Antisymm. 
hZR Symm. $2 Symm. 

TABLE 3 

which, with (26), gives for all x 

Comparison of (30) with (16) shows that for all R, 

and consequently both vR and a$Jax are also continuous a t  y = 0. These results 
completely determine the symmetry of the problem; for example, the potential 
part of the flow field arises at  most from a distribution of vortices over the airfoil, 
while the potential part of the magnetic field is due to a (fictitious) distribution of 
magnetic ‘sources and sinks’. The symmetry is thus the same as found by Sears 
& Resler for R, = co. The symmetry properties of the various quantities are 
listed in table 3. 

Further information can be obtained by substituting (27) into Ohm’s Law, 
equation (4): u(x,  0+) - u(x,  0-) = (g(x, 0+) - E(x, O-))/4nBm. 

t No surface currents can exist, of course, for finite R,  in the steady state, since all 
currents tend to diffuse away from the boundaries. They do not exist, however, with the 
present field orientation, even in the limit of R,+m (Sears & Reeler 1959). 
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But in view of the symmetry properties listed in table 3 this implies 

and also h,(x, 0+) = 0 = h,(x, 0-). 

The boundary-value problem for the potential flow 
Equation (2.3) of table 2 implies uR(x, 0*) = rt mvR(x, 0*) T yv&(s, Oi) and this 
result with (25 )  in (32) leads to a relation between aq51/i3xl,=o+ and v&, 0) 

= - mvR(x, 0) - yu&(x, 0) (34) 
correct to order R ; I .  Eliminating w R  with (26) and iterating in the resulting 
formula, one easily finds the alternative relations 

either of which provides the necessary boundary conditions for the potential 
field when added to conditions of vanishing perturbations at  infinity and the 
symmetry properties already determined. It will be seen later that while (35b) 
appears to be in a nicer form it is probably not uniformly valid. For most purposes 
(3511.) will be more useful than (35b). 

The fmt two terms in the right-hand side of equations (35) will be recognized as 
forming the potential-flow boundary condition for the infinite R, case previously 
determined by Sears & Resler. The last terms in equation (35 a )  represent the first 
correction of the boundary condition for q51 due to the fact that R, is fmite. Thus, 
not only is the rotational part of the field modified when R, is finite, but also the 
irrotational field is changed through the boundary condition. 

Solution of the potential problem leads to a complete determination of the flow 
field (within the limitations already stated) since knowledge of aq5,/ay determines 
vB on the airfoil through the boundary condition (26). Moreover, vR is zero off the 
airfoil (on the x-axis), as can be seen in the following manner: using the results of 
table 2 with equation (32), we can integrate the s-component of equation (3) on 
the x-axis to obtain 

(36) 
correct to order R i l .  But the pressure perturbations must vanish on the x-axis 
off the airfoil from symmetry considerations, so h,,(x, 0*) and its derivatives 
must vanish off the airfoil. Furthermore, equation (2.7) of table 2 shows that 

(37) 
1 Y 

vR(x, 0) = T m h y R ( ~ ,  O*)  rt z 2 h ; R ( x ,  O * )  
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again correct to R;l. Consequently, v B  is known on the entire x-axis, and all rota- 
tional quantities, including the currents, are determined, once is determined. 

In addition, the pressure on the boundaries is immediately determined upon 
solution of the potential problem, since comparison of equations (36) and (34) 
shows that 

which also implies that 

p(x, O * )  -pm = - 

ax 

(38) 

(39) 

This last relation determines a$,/ay(,=,*, in view of equation (33). 

provided only that a $ , / a ~ l ~ = ~ +  is finite at  the trailing edge. 
Note, finally, that the Kutta condition is satisfied, through equation (38), 

Application to thin airfoils 
(a) Direct problem 

The potential-flow boundary condition (35a) presents a rather formidable 
boundary-value problem when only Y'(x) is given, since it amounts to a differen- 
tial equation relating potential derivatives of different order on the airfoil. For 
example, the solution due to Rott & Cheng (1954), available when R, = 00, no 
longer applies. 

The theory of conjugate functions enables one to write (35a) as an integro- 
differential equation in a$,/ay jue0+ 

in which the Kutta condition has been applied. The symbol Bdenotes the Cauchy 
principal value. Solution of equation (40) is beyond the scope of the present paper 
and will be left for future research. 

Another approach to the problem, which is somewhat more revealing at  this 
early stage, is to use the Glauert series (Glauert 1926) appropriate for that family 
of flows wherein 

(41) 
m 2Lx !&I = - B,cosn8; __ = cos8. 

ay ,-O+ n=O C 

The Glauert theory shows that in such cases 

1-cos8 351 =Bop  i- C BnsinnO 
ax sin8 

and it can be seen that this satisfies the Kutta condition at  the trailing edge. 
Moreover, because of equation (38), the loading is 



462 James E. McCune 

and the lift coefficient becomes 

It should be noted that the limit m -+ og gives the classical formula. 
Unfortunately, these simple results cannot be taken too seriously, since the 

profle shapes that correspond to this family of solutions are quite unusual. The 
condition (35a) implies in this case that 

(45) 

The profiles corresponding to (45) have singular slopes at  the leading edge and 
singular curvatures at  the leading and trailing edges, unless B, vanishes. Such 
geometrical details appear to be necessary in order to set up the family of flows 
satisfying the Glauert relations, but it is unlikely that real fluids, acting in the 
presence of boundary layers and unable to respond to detailed profile contours, 
would actually show the kind of behaviour indicated in (42). 

It should be mentioned here that application of (35 b) in replacing either (40) or 
(45) will result in generally more severe singularities at  the leading edge (either in 
the flow field or in the profile shape) than those present when R, = 00. The 
iterative procedure used in obtaining (35 b) from (35a) is consequently not uni- 
formly valid and should be applied only with great care. 

(b)  Indirect problem 

Equation (45) illustrates that even the indirect problem of aerodynamics, 
wherein the pressure is specified and the profile shape is required, is not neces- 
sarily simple. Specification of the pressure amounts to specification of a$,/& 11/50+ 
(equation (38) ) ,  and from this aq5,/ayly=O+ can immediately be determined from 
the familiar relation 

If a$,/axI,=,+ is not singular, this relation, along with the specified value of 
aq5 , /a~l~ ,~+,  can be substituted into (35b)  to determine Y’(x) .  If i3$,/8~l~=~+ is 
singular, (35a) must be used. 

A simple example of the indirect problem for R, = co was given by Sears & 
Resler. They specified that the loading be elliptic (proportional to sin@ and 
determined the corresponding profile shape. As an example of the use of the 
present theory, we may repeat their procedure for finite values of R,. 

If the loading is elliptic, only B, in the Glauert series is non-zero. Then (45) 

Hence 
( ~ ~ - $ ) + - , / ( 1 - 4 ~ ’ ) - -  X 1 cOS-’2X--,/(1-4~~) Y 

2m 4m m2 
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where L has been identified with the airfoil chord, c, and the value of Y(4)  has 
arbitrarily been put equal to zero. This airfoil shape has been plotted in figure 3 for 
several values of m end R,, under the restriction that the magnitude of the loading 
be the same for each case. 

The airfoil shapes shown in figure 3 for m < co amount to airfoils of small 
camber at an angle of attack. The effect of the magnetic field, therefore, is to 
change the pressure distribution for a given airfoil from essentially that of a flat 
plate (with leading-edge singularity) to a case of ‘shockless entry’ with sym- 
metrical loading. Consequently, the magnetic field has a strong (generally 

FIGURE 3. Airfoil camber lines producing an elliptic loading for various values of R, and m. 
m gives the classical result for all R,; the curve R, = 1 is included only for the case 
rn = 1. The comparison is made for the same magnitude of the loading (cf. equation (43)). 
-, R, =co (Sears & Resler 1959); - - - - R, = 1; ----, R, = 5. R,,,=oU,L. 

favourable) effect on the boundary layer and provides a means of shifting the 
centre of pressure. However, it is clear that except for m = co (zero magnetic- 
field strength) each airfoil is associated with a positive drag. This drag arises 
from wave energy carried away by the Alfvkn mechanism; the effect of finite 
conductivity is to reduce the drag for the same loading. 

It will again be noted, form = 1, that R, = 5 provides a good approximation to 
the results obtained by Sears & Resler at R, = co. This conclusion holds for a wide 
range of m and is important in defining what we mean by large or infinite magnetic 
Reynolds numbers. 

Current penetration 
In  order to determine the extent of the important magneto-aerodynamic 

interaction for an airfoil, let us use the present theory to compute the depth of 
penetration into the field of the current density. For this purpose, we choose 
a convenient form for the pressure distribution and use it, through equations (36) 
and (2.4), to determine a corresponding value of the current density on the airfoil. 
This will provide sufficient information, through equations (21) or (22), to deter- 
mine approximately the current penetration into the field. 
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As an example, let us suppose that on the airfoil 

m2+ 1 
p(z ,  O+) - p ,  = P( 1 - 422) = - - m2 h,& O + ) ,  (49) 

so that E(z, O+) NN (1  + m2) hi,(z, O+) = 8m2Pz. 

from which it is easily recognized that the limit R --f 00 is 2((4,0+) (z -my), in 
agreement with Sears & Resler. Further, the right-hand side of equation (51) can 
be integrated exactly to give 

 my)[..(^'-") JKY - e r f ( 3 s y ) ] ] ,  (52 )  

where 

This expression has all the correct limits, since 

erf (z) = - ect2dt and erf( -00) = -erf(co). 

The distance in chord lengths (measured along the characteristic line z -my = 4) 
for the current density to fall off to one-tenth its value at y = O+ is plotted versus 
R, in figure 4 .  The current penetration is infinite if R, = co and still very large 
for finite R,. 

It is of interest that the current penetration is very much larger for the airfoil in 
question than for the wavy wall with a wavelength equal to the airfoil chord. In 
fact, it is easy to check that the sinusoidal mode that is damped by the same ratio 
at the same height has a wavelength equal to about twenty-five chords. This is 
related to the fact that the current waves set up by the airfoil diffuse outward from 
their characteristic lines at  the same time that they diminish in intensity, so that 
an observer at a large height above the airfoil will measure appreciable current 
density for many chord lengths in the z-direction (see figure 4). 

The appearance of the AlfvAn mechanism, with its ability to carry currents and 
the associated vorticity deeply into the flow, renders the crossed-fields case more 
interesting than it might otherwise be. The large current penetration is in sharp 
contrast with the aligned-fields case (Sears & Resler 1959), where the AlfvBn 
mechanism cannot penetrate the flow field, and with the small R, case, where the 
Alfv6n mechanism is not discernible for any field orientation. (In the latter case, 
the first-order currents are given directly by the fluid motion and the applied 
magnetic field, with the usual hydrodynamic flow pattern prevailing, and con- 
sequently the currents die out in about one chord length.) 

21;. IOX 



Thin airfoils in JEuids of Jinite electrical conductivity 465 

The large R,  approximation-discussion of error 
As mentioned previously, the large R, approximation, when used in the 

context of Fourier synthesis, requires the special assumption that the higher 
harmonics of the rotational part of the flow field (and of the magnetic field) 
are not too important. It would be useful, therefore, to give an indication of how 

R,,,=uUL 

FIGURE 4. Current penetration into the flow field resulting from the Alfvh wave mechanism. 
The quantity yp(m2 + 1)* is the distance in chords, measured along characteristic lines, for 
the current density to fall off to 0.1 times its value at the airfoil. The inset figure illustrates 
the chordwise spread, as well as the decay in amplitude, of the current density generated 
by an airfoil of the shape shown. 

rapidly the Fourier transforms occurring in any given problem should fall off 
for large Ihl. Any such indication will naturally suffer from a certain degree of 
arbitrariness, but it is hoped that the discussion given below will, nevertheless, 
be helpful. 

We have at our disposal a clearly defined ‘cut-off’ value for the wave- 
number, A* = 47rRm/(m2+ l), with m explicitly assumed to be of order one. 
We shall consider the contribution of the Fourier transform for values of A 
less than A* as an indication of the magnitude of a given quantity. We shall 
then require that the contribution made for values of h greater than A* be 
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negligible in comparison with this magnitude. For this purpose we d e h e  in the 
upper half plane 

In this approach to the problem there are really two independent considerations 
that arise. The first has to do simply with the convergence of the Fourier integrals 
involved. This is a standard problem and has nothing directly to do with the 
large R, approximation itself. In  order to simplify the following discussion we 
shall assume that we are dealing with a problem in which the most slowly 
convergent transforms (see table 2 )  are absolutely convergent. t 

Since the large R, approximation was introduced in this problem primarily to 
enable us to deduce the boundary conditions on the x-axis, our first concern is 
with the behaviour of eT and M as y -+ 0. Under the assumption of absolute 
convergence it will generally be sufficient for the purposes of the large R, approxi- 
mation to require that the transform (P(h), say) has no maxima at values of h 
greater than A* and that IF(h*)l < lF(A,)l, where A, is some reference wave- 
number at which IF( is at a maximum. To give a specific example, let us suppose 
that we have a transform of the form A/[l+(A/hc)"] .  In  order for this to be 
absolutely convergent, n > 1, and hence IF(h*)l < IF(0)l provided A*/& 9 1. 
For this example, at the point x = 0, y = 0, where the effect of the higher har- 
monics is greatest, we find the ratio of eT to M to be of the order 

(A,/h")"-l. 

Thus, in this example we simply require A* 9 A,. 
Considerations similar to this can be applied for any given problem at y = 0 

when the boundary conditions are given and the nature of the pertinent trans- 
forms has been determined. Often, however, since the value of the function itself 
will be known on the x-axis, only the behaviour of its transform for wave-numbers 
greater than A* need be determined so that eT can be compared directly with the 
function in that region. 

It is also of interest to investigate the influence of the higher harmonics on the 
flow field as a whole, and in particular their comparative importance in the far 
field. For this purpose we note that, since A" = m/Zy, 

t Of course, in practical problems it is not necessary that the Fourier integrals all be 
absolutely convergent; convergence in the mean is sufficient. However, in that case the 
discussion of the error associated with the large R,  approximation becomes more compli- 
cated. For example, eT does not exist at the point z = 0, y = 0 unless absolute convergence 
is assumed. The present discussion is limited to the assumption of absolute convergence for 
simplicity. 
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and hence 
m 

IW) I e”Vdy 
E 9%’. (55)  

Is,l< 
$‘(A) eiA(z-mz/) exp - __ I M I  11:2’ ( $)dy  

This is not the closest upper bound that might be constructed, but it has the 
advantage of being relatively easy to use. 

For example, if we again consider Fourier transforms of the form A / [  1 + (h/hJn], 
the upper bound of the ratio given by (55)  is of the order (for integer n and y not 
near zero) 

+ [z( 1 - eaV cos A*%) - (my/.$) e-aV sin A*5]2}9 

where a = (m2,/2/4y), z = (z-my) and E(u)  is the exponential integral, 

It will be noted that 9%’ approaches zero exponentially as y --f co for all n, and 
for any finite value of y it vanishes as Rm --f co. In particular, if m = 1, and 
R, = 3 / ~ ,  9%’ is proportional to e-”6(n - 1) ! at y = 1. Thus, at  finite values of y the 
higher harmonics are automatically damped out rapidly due to the very nature 
of the rotational parts of the solution, and the large R, approximation is good in 
the far field even for functions whose transforms are themselves rather slowly 
convergent. 

Conclusions 
We have shown that it is possible to compute, with the assumption that the 

magnetic Reynolds number R, is large but finite, significant magneto-aero- 
dynamic quantities for finite bodies immersed in an incompressible fluid stream 
in the presence of a uniform magnetic field which is perpendicular to the free 
stream and in the plane of the flow. To do this, the results of an exact calculation 
of the flow field of a small-amplitude wavy wall, valid for all R, and m, have been 
used in approximate form to construct a thin airfoil theory for fluids of large but 
finite conductivity. The boundary-value problem for the irrotational part of the 
flow field has been determined, and the method for obtaining the pressure dis- 
tribution on the airfoil and all rotational parts of the flow field once the boundary- 
value problem is solved has been given. 

We have used the theory to solve the indirect problem of determining the air- 
foil shape associated with a given loading and have compared the results with 
those of Sears & Resler for R, = 00. In  addition, we have studied for a particular 
example the depth of penetration into the flow field of the currents set up by the 
motion of an airfoil. As shown in figure 4, the depth of penetration of this current, 
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which is carried into the flow field by the Alfvh mechanism, is surprisingly large. 
Indeed, it is so large as to emphasize the need for further study of current 
penetration in practical cases, for example, when the magnetic field is non- 
uniform, or of finite extent. 

Perhaps the most significant conclusion to be drawn from the present study is 
that a value of R, = 5 is, in the cases studied, large enough to be a good approxi- 
mation to  infinity. Moreover, if the Fourier transforms of the pertinent quantities 
converge sufficiently rapidly, the present technique of expanding in reciprocal 
powers of R, appears to be valid in the neighbourhood of R, = 1. These results 
help to define what we mean by large magnetic Reynolds number in this area of 
magneto-aerodynamics. 
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